Platform-specific Modeling for RIOT based loT Systems

Burak Karaduman
International Computer Institute
Izmir, Turkey
bburakkaraduman@gmail.com

Joachim Denil
University of Antwerp
Antwerp, Belgium
joachim.denil@uantwerpen.be

ABSTRACT

The variety of smart devices and their communication models in-
crease the development complexity of embedded software for IoT.
Thus, the development of these systems becomes more error-prone,
complex, and costly. To tackle this problem, in this study, a model-
driven approach is proposed for the development of RIOT-OS based
IoT systems. To this end, a meta-model is designed for RIOT-OS.
Based on this meta-model, a Domain-specific Modeling Language
(DSML) is developed to graphically represent the domain models.
To gain more functionality for the language, domain rules are de-
fined as constraints. Also, system codes are generated partially from
the instance models. In this way, the development is supported by
code synthesis and the number of bugs is reduced. Finally, a smart
irrigation system and a smart lighting system are implemented to
evaluate the proposed DSML. The results show that about 83.5% of
the final code is generated automatically on average.

KEYWORDS

Domain-specific Modeling, Internet of Things, Embedded Software,
Wireless Sensor Network, RIOT, Smart Irrigation System

ACM Reference Format:

Burak Karaduman, Moharram Challenger, Raheleh Eslampanah, Joachim
Denil, and Hans Vangheluwe. 2020. Platform-specific Modeling for RIOT
based IoT Systems. In IEEE/ACM 42nd International Conference on Software
Engineering Workshops (ICSEW’20), May 23-29, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3387940.3392194

1 INTRODUCTION

Internet of Things (IoT) is rapidly taking its place in different tech-
nologies and markets, such as home appliances, smart buildings,
and Industry 4.0 applications. Generally, in these systems, devices
communicate with each other and work in coordination to create
a smart environment/space. The IoT systems consist of different
components such as sensors, actuators, computation elements, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org,.

ICSEW’20, May 23-29,20, Seoul Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7963-2/20/05...$15.00
https://doi.org/10.1145/3387940.3392194

Moharram Challenger
University of Antwerp
Antwerp, Belgium
moharram.challenger@uantwerp.be

Raheleh Eslampanah
University of Antwerp
Antwerp, Belgium
raheleh.eslampanah@uantwerpen.be

Hans Vangheluwe
University of Antwerp
Antwerp, Belgium
hans.vangheluwe@uantwerpen.be

data (or log) managers. Creating IoT systems require hardware com-
ponents, an operating system (or a firmware) to manage hardware
resources, a communication protocol to establish a network. The
resulting system is complex with different components requiring
to be programmed to work collaboratively. This complexity makes
the design and analysis of these systems time-consuming, costly,
and cumbersome. This can be addressed with Model-Driven Engi-
neering (MDE) techniques [15] which focus on models during the
development to increase the level of abstraction and automatically
synthesize the system artifacts. Using a model-centric development
methodology, design models can also be used for the early analysis
and validation of the system.

To this end, we introduce a Domain-specific Modeling Language
(DSML) [18], called DSMLARIOT, for the design and development of
RIOT based IoT systems. DSML4RIOT provides an abstraction for
RIOT-OS [3] which focuses on programming low-power, memory-
constrained, and wireless IoT devices. In this study, model-driven
development is applied on RIOT’s TCP, UDP, and CoAP protocols
(backbone features to create a WSN or Wi-Fi based network) as
well as multi-threading capability. Moreover, the GPIO feature of
the RIOT operating system is modeled and code generation rules
are written to achieve digital I/O operations as well as to implement
IoT systems.

The RIOT operating system is selected as it has support for
real-time tasks, multi-thread applications, small memory foot-print
devices, vast hardware types, Wi-Fi protocol (IEEE 802.11) based
ToT development boards (e.g. ESP32!), as well as Wireless Sensor
Network (WSN) protocol (IEEE 802.15.4) based devices. This makes
it a promising operating system for real-time IoT systems. It is a
C-language based OS and considers modularity principles. RIOT
has a full IPv6 network protocol stack as well as standards protocols
such as 6LoWPAN, RPL, TCP, and UDP.

To evaluate the generation capability of the proposed DSML,
two case studies are designed and implemented using DSML4RIOT.
To this end, ESP32-WROOM (a low-cost 32-bit dual-core micro-
controller) is used which has an integrated Wi-Fi and Bluetooth
modules and targets a wide variety of applications ranging from
low-power sensor networks to the demanding tasks.

This paper is organized as follows: Section 2 discusses the related
work. The abstract syntax of the proposed DSML is presented in
Section 3. In Section 4, the code generation rules are discussed.

Uhttps://www.espressif.com/en/products/hardware/esp-wroom-32/overview

ICSEW’20, May 23-29,20, Seoul,Republic of Korea

Section 5 elaborates the two case studies to evaluate the perfor-
mance of the proposed modeling language. The paper is evaluated
in Section 6 and concluded in Section 7.

2 RELATED WORK

This study contributes to the literature by providing a model-driven
engineering method for developing RIOT-based IoT systems. To
the best of our knowledge, currently, there is no study to address
the modeling and development of WSNs based IoT systems using
RIOT-OS. Providing a generative modeling language, as proposed
in this study, can facilitate the efficient development of IoT systems
based on WSN.

In the literature, there are some studies related to modeling and
meta-modeling of IoT systems. Some of these studies address meta-
models [20] and issues such as node connectivity, configuration
[11, 19], security [4], service discovery [1], and runtime adaptability
[12]. In addition, there are recent modeling approaches such as facet-
oriented modeling [8], model federation [10] and template-based
meta-modeling [7]. In the study of [5], a comprehensive survey of
model view approaches is presented. In [16], a DSML is presented
specific for ultra-thin IoT devices. The authors provide a DSML
named IoT-PML with code generation support for sensor device
drivers. They use RIOT operating system to implement a case study.

We had a series of studies with the ultimate goal of providing a
platform-independent generative modeling language supporting
both WSN and Wi-Fi based IoT systems independent of target tools.
In this regard, we have developed a meta-model for Contiki-OS [9].
Later, domain-specific languages have been developed for TinyOS
[17] and ContikiOS [21]. Moreover, to evaluate these DSMLs, case
studies [14], [13], and [2] are implemented. The current study ad-
dresses domain-specific modeling for RIOT and the next step would
be to level up the abstraction according to these DSMLs and develop
a Platform Independent Modelling (PIM) framework to support
generative development of IoT systems based on WSN and Wi-Fi
systems.

3 THE SYNTAX OF THE LANGUAGE AND
STATIC SEMANTICS

This section presents the main elements of the proposed DSML
including the abstract syntax as a meta-model, static semantics as
constraint checking rules, and code generation for the translational
semantics of the language.

3.1 Abstraction syntax

The meta-model of RIOT operating system is introduced in this
section. It represents the abstract syntax of the domain-specific
language. Generally, a meta-model represents system elements,
relations, and cardinally constraints of the elements and their rela-
tions. This meta-model is integrated with our previous study [21]
which supports modeling ContikiOS. Considering the space limita-
tions, the whole meta-model is not shown in this paper. However,
the full version along with other components are available in an
online bundle?.

Zhttp://bit.ly/2RHSf2t

Burak Karaduman, Moharram Challenger, Raheleh Eslampanah, Joachim Denil, and Hans Vangheluwe

Table 1: Number of elements in sub-parts of the meta-model

EClass EAttribute Composition EReferance

System View 4 3 0 4
IoT Log Manager 4 6 3 7
Gateway(Rpi 3)° 6 9 5 8
ESP8266 9 21 8 5
ContikiOS 24 60 20 26
RIOT-OS 8 24 7 6
Total 51 120 43 52

To give an idea of the complexity of the full meta-model Table 1
gives the number of meta-classes, attributes, compositions, and
references for the meta-model (including RIOT-OS, ContikiOS, ESP,
Gateway, Log Manager related elements) as well as for the whole
meta-model. Elements for the System view are not considered in
the total numbers, as it borrows its elements from the root elements
of the other viewpoints (other Classes of the meta-model).

According to Table 1, the meta-model elements and relations of
ContikiOS are much more than RIOT-OS. This is because Contiki
has a lot of event-based features and specialized timers. Moreover,
in the design of the ContikiOS’ meta-model, some features are mod-
eled as EClass to give diversity to the user. In RIOT-OS’ meta-model,
RIOT’s features are modeled as attributes to provide more abstrac-
tion to the user. The same approach cannot be used in ContikiOS,
because it is not possible to decide which and how many timers (or
events) are going to be used by the user. In RIOT-OS, it is possible
to decide where a timer should be. Since it is a real-time operating
system, it does not have additional features for event handling.
Accordingly, most of the features could be modeled as an attribute
in one EClass. In Figure 1 part of the meta-model related to RIOT’s
is demonstrated.

The important elements of the meta-model are described below:

o Thread: It is used to define additional threads to the main
thread. Name attribute is used for the function name of that
thread. Priority value can be set to define the priority of the
thread.

Xtimer: It is a delay timer that can be used in threads. This
feature is useful if a delay has to be used before the initial-
ization of any task or to give running time for the other
threads.

PlatformR: This is the root of the elements of the RIOT view-
point.

NodeR: It represents any node (e.g ESP32) and it can be either
server or client. If it is a server then, it can also run a CoAP
server.

e CoapParams: Coap params is used for CoAP server. It defines
a request as POST or GET. FunctionName parameter defines
the URI of the request address.

Socket: Socket is used for UDP and TCP protocols. With
its attributes, it defines the usage of IPv4 or IPv6 as well
as Local and Remote ports to establish a connection. Also,
IPAddress parameter is the address to which it is connected
and Message attribute represents the message to be sent.
GPIO: It used to set a GPIO of the board (e.g ESP32) as ac-
tive. Number attribute represents the GPIO number to be
activated. Once it is activated, then input or output role can

Platform-specific Modeling for RIOT based IoT Systems

[0..*] saul E XTimer
= Delav: EInt
[0..*] xtimer

Temperature :
=
EBoolean = false €

o, Humidity :
Thread . EBoolean = false
B8 [0-1]dtimeR © Name : EString
= Name : EString
© Priority : EInt ’
[0..*] gpio_self
[0..*] thread
H cprio
[0..*] threadR = Number: Elnt [0..*] saulR
isinput:
EBoolean = false
[0..*] gpjo -, isAnalog :
[PlatformR EBoolean = false
©= Name : EString -
[0..*] gpioparams
[0.*] node [0..*] gdioR
. [CoAParams
E NoderR = iEsBpgcs;tle:an = false
o = 0. coaparamsR functionName :
= Name : EString EString
-, isServer: EBoolean =
false

CoAp : EBoolean =
o
false [0..2] socketR
= UDP: EBoolean = false
= TCP: EBoolean = false
= Multihop : EBoolean = —,
false

H socket

= Name : EString

= islPv4 : EBoolean = false
= isIPv6 : EBoolean = false

[0..*] coaparams = LocalPortNumber : EInt

= RemotePortNumber : Eint
= IPAddress : EString
= Message : EString

[0..2] socket

Figure 1: RIOT-OS Meta-model

be defined and also it can be set as analog. It is configured
as digital by default.

o SAUL: Saul is a sensor/actuator abstraction layer for RIOT.
In this way, any sensor can be activated and any actuator
can be interacted without adding device parameters or extra
configuration codes in the application.

3.2 Static Semantics

To apply the domain rules in the modeling environment and help
the user to design more accurate models, semantic constraints are
implemented in the framework using the Acceleo Query Language
(AQL) * which is built-in in the Eclipse Sirius Framework. In fact,
these rules apply the domain rules in the RIOT modeling environ-
ment.

The constraint checking languages are more expressive than
the simple cardinality property checking rules implemented in the
meta-model and they can check those properties as well. However,
the constraint checking rules are generally used to implement the
rules that are not possible to implement in the meta-model, such
as the rules checking a property between the meta-elements that
are not directly linked together. In other words, these rules are
complementary to the meta-model cardinality rules. Some of the
rules implemented in DSML4IOT are listed in the following list.

o Constraint rule 1: aql: (self. Number > 0)
o Constraint rule 2: aql: (self.UDP and self TCP and self.socketR-
>size()>0)

“https://www.eclipse.org/sirius/doc/specifier/general/Writing_Queries.html

ICSEW’20, May 23-29,20, Seoul,Republic of Korea

o Constraint rule 3: aql:(self.LocalPortNumber != self. remotePort-
Number)

o Constraint Rule 4: aql: (self.threadR->size() < 5)

o Constraint rule 5: aql: not (self.isIPv4 and self.isIPv6)

Constraint rule 1 checks whether the Number attribute of GPIO
element is a negative value or not, and constraint rule 2 checks
whether TCP, UDP or both of them are used in the model and
whether Socket element is not used then it warns the user to in-
clude one. In constraint rule 3, local and remote port numbers are
compared, to control not to have the same number, because, if these
two ports have the same value, then messages cannot be sent. Con-
straint rule 4 is written to warn the user for using too much threads
for these recourse constraint devices. If the user adds more than 5
threads, the user is warned. Because using a lot of threads may lead
to poor performance and memory overflow problems. Constraint
rule 5 is implemented to direct the user to use either IPv6 or IPv4, as
enabling these two IP protocols at the same time is not considered
a wise choice.

3.3 Graphical Editor

In this section, the graphical concrete syntax used in the editor
for modeling target systems using DSML4RIOT is introduced. The
graphical editor is developed using the Eclipse Sirius Framework®.

The concrete syntax provides a mapping between graphical/tex-
tual notations and abstract syntax elements. In this study, some
graphical notations are used to represent the elements in the editor.
The modeling environment for RIOT operating system is added as
anew viewpoint as well as an extension to the DSML introduced in
[21]. In Figure 2, RIOT operating system is represented by a symbol
R. In this way, the Platform-specific Modeling environment can be
created using this element, represented by R symbol.

hasRaspberryPi

haschr

sensing hasRaspberryPi

/ \ firedetection (CRCEIEIENE)
Contiki hasContiki
ki

www.example.com

Riot
asESP

ESP_LM35

hasgSP
ESP_DOOR
Figure 2: RIOT-OS as a new viewpoint in system viewpoint

In Figure 3, elements and relations of RIOT operating system in
DSMLA4RIOT are shown. They are used to model a system and the
designed model can be used to generate architectural codes for the
target system. In Figure 5a and 5b, a model of smart irrigation case
study is given. The models of the case studies are designed using

Shitps://www.eclipse.org/sirius/

ICSEW’20, May 23-29,20, Seoul,Republic of Korea

elements and relations contained by palette that is represented by
Figure 3. The elements are represented by star sign and relations
that connect these elements are represented by blue solid line.

(= Containers (= Edges

4 ModeR ™\ hasGPIO

4 GPIOR \hasCoapParams
4 CoapPararns \hasGPIOParams
4= SocketR \\haSSDCkEt

4 ThreadR. ™\, hasThread

<4 XTirner \\has}(Timer

4 sl ™\, hasSaul

Figure 3: Elements and relations of RIOT-OS

4 CODE GENERATION: TRANSNATIONAL
SEMANTICS OF DSML4RIOT

In this section, the code generation mechanism of DSML4RIOT
is elaborated. Also, some excerpts are given and discussed from
generation rules.

RIOT-OS’ threads are defined using Thread statement and all the
threads are run in parallel. During the development of DSML4RIOT
models, the same concept is used. The code generation rules are
written to create each defined thread with the same pattern. In RIOT-
OS, a priority-based scheduling algorithm manages to schedule
threads according to their priority level. In DSML4RIOT, thread
priorities can be also set by the user. Each thread, including the
main thread, is generated to run with the default priority. However,
if the user desires to set a different priority level for a thread, then it
must be done by adding thread call/yield functions (as delta codes)
to handle the desired thread sequence.

Listing 1: Code excerpt for TCP, UDP, and IP rules

1 [if (n.socketR —> at(1).isIPv4)] #include" net/ipv4/addr.h"
// for udp\&tcp

2 [/if]

3 [if (n.socketR —>at(1).isIPv6)] #include" net/ipv6/addr.h"
// for udp\&tcp

4 [/if]

5 [if (n.TCP) or (n.UDP)]#include'net/af.h"[/if] //udp\& tcp

6 [if (n.UDP)]

7 #include "net/protnum.h" // for udp

8 #include "net/sock/udp.h" // for udp

9 [/if]

10 [if (n.TCP)] #include "net/sock/tcp.h" [/if] // for tcp

In Listing 1, a code excerpt of the code generation rules for
UDP and TCP libraries is shown. According to the user’s model,
necessary libraries are included in the generated code. For example,
if the user designs a TCP based application, TCP library, and other
related libraries that are shown in line 5 and line 10 are instructed.
If the UDP is decided to be used, then, lines between 6 and 9 are
instructed. As mentioned earlier, the user can use either IPv6 or
IPv4. If the user selects both IPv6 and IPv4, a constraint rule, which
is written to warn the user, pops-up to direct the user to select

Burak Karaduman, Moharram Challenger, Raheleh Eslampanah, Joachim Denil, and Hans Vangheluwe

only one of them. If the user selects IPv4, then, lines 1 and 2 are
instructed. Lines 3 and 4 are instructed when the user decides to
use IPv6.

In Listing 2, an excerpt from code generation rules is given from
Socket element. If the model has a socket element, the related rules
are instructed to generate codes. According to the user selection,
sock_udp_ep_t local variable is configured as either IPv4 or IPv6.
Lines 1 and 3 are instructed to configure a socket variable for IPv6.
The same configuration is made for IPv4 by instructing lines 2 and
4.

Listing 2: IPv4 and IPv6 based network configuration rules

1 [if(socket.isIPv6)]sock udp_ep_t local = SOCK_IPV6_EP_ANY;

2 [if (so[g{i]t. isIPv4)]sock_udp_ep_t local = SOCK_IPV4_EP_ANY;

3 [if(so[c/:lli]t‘ isIPv6) Jsock_udp_ep_t remote = {. family=AF_INET6};

4 [if (so[(ill(fe‘l isIPv4) Jsock_udp_ep_t remote = {. family=AF INET};
[/if]

When the user selects TCP and/or UDP communication proto-
cols, specific threads and thread functions are generated automat-
ically with the same priority as the main thread (so each thread
guarantees to be run). Therefore, additional threads are not re-
quired to be defined for UDP and TCP by the user. In this way,
these automatically-generated threads ease the user’s development
work. Threads for UDP and TCP protocols are defined to be started
when the device is powered on. The user-defined threads in RIOT
operating system must be defined in the main thread. To run all
threads equally, when the main thread is initialized THREAD CRE-
ATE WOUT YIELD parameter must be given as a parameter to each
thread. Line 1 in Listing 3 shows the code generation rule for this
special thread. In other words, If the user activates TCP protocol,
then a special thread, a stack, and a thread function are generated.
Also, the user can create a thread for any specific task. Lines 3-5
in Listing 3 show the code generation rules for a thread creation
according to the user model.

Listing 3: User-defined thread generation rule

1 [if (n.TCP)]char tcp_stack['[THREAD_STACKSIZE_MAIN]/];[/
if]

3 [for (thread:Thread|n.threadR)]

4 thread_create ([thread .Name/]_stack, sizeof ([thread.Name/]
_stack), THREAD_PRIORITY_MAIN - [thread.Priority/],
THREAD_CREATE_WOUT _YIELD, [thread.Name/], NULL, "[
thread Name/]");

5 [/for]

To create a thread, a stack, a thread function and a definition in
the main function of this thread must be provided. In Listing 3, at
line 4 thread_create function is used to create a thread with given
parameters. If priority is not set, then the priority level is equal
to the main thread. Moreover, THREAD CREATE WOUT YIELD is
given as a parameter to start a thread when the main function is
initialized. thread_name represents the name of the function and
also it is a pointer to thread’s function. The for loop at line 3 and 5
generates the threads that are defined by the user in the model.

Platform-specific Modeling for RIOT based IoT Systems

In Listing 4, lines 1-8 generate handler functions that are defined
using coapparams element in the model. These functions are called
when any request is made to that function with a URL If any coappa-
rams element has to use a GPIO, then, also GPIO configurations are
generated in this rule. Moreover, lines 5-7 are instructed to toggle
any GPIO. In this way, when any request is made, actuation can
be made such as turn on/off a light, control a relay, or control a
DC motor. Lines 10-14, define a CoAP function to be generated and
accessed as either a POST or a GET request.

Listing 4: CoAP Code generation rule

1 [if (n.CoAp)]
2 [for(coap:CoAParams|n.coaparamsR)]

3 static ssize_t _[coap.functionName/]_handler(coap_pkt t «
pkt, uint8_t «buf, size_t len, void »context) {(void)
context;

4 [for (gpio:GPIO| n.coaparamsR.gpioparams)]

5 extern gpio t g[gpio.Number/];

6 gpio_toggle (g[gpio. Number/]);

7 [/for]}

8 [/for]

9 const coap resource t coap resources|'[]'/] = {

10 [for(coap:CoAParams|n.coaparamsR)]

11 {" /[coap.functionName/]",[if (coap.isPost)]COAP_GET

[else] COAP_POST]/if],_[coap.functionName/]
_handler,NULL},
12 {" /[coap.functionName/]/",[if (coap.isPost)]

COAP_GET[else] COAP_POST(/if],_[coap.
functionName/]_handler, NULL}[if(n.coaparamsR—>
size()<>1)],[/if]

13 [/ for]

5 CASE STUDIES

To validate DSML4RIOT and evaluate its code generation capability,
two case studies are designed and implemented using the proposed
DSML. The architectural codes are generated using the DSML based
on the design models and then the delta codes are added to have
final code. UDP, IPv6, and GPIO features are used in these two case
studies.

In the following sub-sections, these case studies are introduced
and their development processes are elaborated. In general, most
of the final code is generated using DSML4RIOT, which will be
discussed in detail in the Evaluation Section.

5.1 Smart Irrigation System

This section includes the design and development of the smart
irrigation system.

5.1.1 Case study design. The first case study is a smart irrigation
system. It works using UDP protocol with two nodes including
a server node and a client node. The client node uses a digital
GPIO pin which has a moisture sensor connected. Moisture sensor’s
digital output pin is used and connected to the client node’s GPIO
pin. When moisture level drops to a certain level, it generates a
digital HIGH voltage level, then, the client node sends a message to
the server. If the received message is Dry then the server activates
the GPIO pin to turn on the water motor/pump for irrigation of the

ICSEW’20, May 23-29,20, Seoul,Republic of Korea

plant. The water motor runs for 3 seconds then the ESP32’s GPIO
pin is set as low to stop the motor.

The moisture level of the soil is sampled by GPIO pin 15 of the
client-side. Moreover, in the client-side GPIO pin 2 toggles the
built-in LED of the ESP32 to inform the person in charge about the
system running. If the moisture level is below a set point (this point
is set by a variable resistor on the moisture sensor), in other words
when the soil gets dry, moisture sensor sends a digital HIGH value
to pin 15. Then, a string message, Dry, is sent to the server node.
In parallel, the server always listens to the necessary port. If the
message named Dry is received, then it activates the GPIO 5 to run
the water motor for 3 seconds to irrigate the soil.

Figure 4 represents the schematic for the case studies (the setup
of the case studies are shown in Appendix Section, Figure 7 for
lighting system and Figure 8 for irrigation system). In Figure 4a, the
irrigation system is depicted and in Figure 4b, the lighting system
is depicted. Also, on the right side of irrigation system, the client
node with a moisture sensor is shown. On the left side, the server
node with a water motor is represented.

The design of this case study in DSML4RIOT is shown in Figure
5a for server-side and Figure 5b for client-side.

5.1.2 Generation and implementation using DSML4RIOT. Most of
the code to create the smart irrigation system is generated by
DSML4RIOT. The code generation is done using the models demon-
strated in Figure 5.

According to the Figures 5a and 5b, using three elements in the
server-side and four elements in the client-side, majority of the
code is generated automatically. As Figure 5a shows, Server_Node
element has a Socket and a GPIO element. In this way;, it establishes
an UDP communication as a server and controls GPIO number 5. As
Figure 5b shows, Client Node element has a Socket and two GPIO
elements. In this way, it establishes an UDP communication as a
client and controls GPIO number 15 and number 2.

Listing 5 shows the delta codes that are added to the server-
side. In lines 1 and 2 puts function is called to print the incoming
messages to the screen. This also helps for testing purposes. In
lines 3-7, the generated GPIO functions are shown to activate and
deactivate GPIO 5. The xtimer_sleep function is called for three
seconds delay. If the client sends Dry keyword to the server, then,
the server sets HIGH GPIO number 5, waits for 3 seconds then sets
the GPIO number 5 to LOW.

In Listing 5, the client-side’s delta codes also are shown. In the
client-side, line 9, GPIO number 15 is checked, whether the moisture
sensor sends digital LOW. When GPIO number 15 equals to zero
(i.e. digital LOW) then the client sends Dry keyword to the server.
The xtimer_sleep function in line 10 is generated by DSML4RIOT,
but its place is moved to another line in the generated code. In line
11, GPIO number 2 is toggled to inform about system activity. In
line 12, printf function is called to print the state of the GPIO 15. In
line 13 xtimer_sleep function is added to create a delay.

Listing 5: The delta codes for the server and client sides of
the smart irrigation system

puts("A message is received ");

puts(message);

if (stremp(message,"Dry")==0){
gpio_set(g5);

W N =

ICSEW’20, May 23-29,20, Seoul,Republic of Korea

Burak Karaduman, Moharram Challenger, Raheleh Eslampanah, Joachim Denil, and Hans Vangheluwe

(a) Smart irrigation case study

(b) Smart lighting case study

Figure 4: Schematics for the case studies

Node_Socket Client_Socket
Name: Node_Socket Name: Client_Socket
Pv4: false 1Pv4: false

_IPv6: true IPv6: true

(@ Local: @ Local

Remote: Remote:
IPaddress: fe80:4c2c: IPaddress: fe80:4c2c (™ Client Node
2199:92e8:73ch 2199:92¢8:73¢h fESocket| |\ e Client_Node
Message: ServerHi Message: Dry 3

(@ isserver. false
UDP: true
Server_Node CoAP: false
Name:

@ Server_Node

~ isServer: true
UDP: true
CoAP: false

hasSocket

hasGPIO hasGPIO
hasGFIO
5 15 2
__ Number: 5 _Number: 15 _Number: 2
\® isAnalog; (@ isAnalog: {® isAnalog;

false false false
isinput: false isinput: true isinput: false

(a) Server-side model (b) Client-side model

Figure 5: Models for the Irrigation case study

5 xtimer_sleep (3) ;

6 gpio_clear (g5);

7}

8

9 if (gpio_read(gl15)==0){}

10 xtimer_sleep (1) ;

11 gpio_toggle(g2);

12 printf ("%d \n",gpio_read(g15));
13 xtimer_sleep (1) ;

5.2 Smart Lighting System

This section includes the design and development of smart lighting
system.

5.2.1 Case study design. As the second case study, a light control
system is designed and implemented. In the hardware part, an ESP32
development board is programmed to measure light intensity using
a light-dependent resistor. A comparator circuit is built using a 4.7k
resistor and a 5k light-dependent resistor to sample light intensity
in a room. When light intensity drops below a certain level, the
client sends a message to the server node to open the room light. To
sample the environment light intensity in the client node, the server
node must close the room light not to belie the sampling results
in the client-side. Therefore, before sampling environmental light
intensity, the client node must send a message to the server node
to close the light. Next, the client node samples the environment

light intensity and decides to open either the room light or to close
it. In Figure 4b, the schematic of this case study is shown. On the
left side of this figure, the client node with a comparator circuit
is shown. On the right side, the server node with a light-emitting
diode is represented.

Due to the similarity of the design models between two case
studies, the model of the smart light system in DSML4RIOT is
not included in the paper. However, the generated and delta code
excerpts are discussed in the next section.

5.2.2 Generation and implementation using DSML4RIOT. Listing 6
represents the delta codes that are added to server-side of the smart
lighting case study in lines 1-4. In lines 1-2, the incoming message
and notification sentence are displayed for debugging purposes.
Lines 3-4 show checks the server input. If it receives o character
then it sets the GPIO number to HIGH to open the light. It closes the
light when it receives f character. Listing 6 shows the delta codes
on the client-side in lines 6-9. In line 6, msg variable is initialized.
In line 7, one hour period is set for the sampling time. In lines 8-9,
the client decides which message is sent to the server. In line 8, it
samples the environment light intensity and checks the result of
the light-dependent resistor from GPIO number 15.

Listing 6: The delta code for the server and client sides of
smart lighting system

1 puts("A message is received ");

2 puts(message);

3 if (stremp(message,"0")==0){ gpio_set(g2); //open the lights }

4 else if(stremp(message,"{")==0){ gpio_clear (g2); // close the
lights |

5

6 char msg=0;

7 xtimer_sleep (3600); // sample period is 1 hour.

8 if(gpio_read(g15)==0){msg="0";}

9 else{msg="f";}

6 EVALUATION

Evaluation of our modeling platform is done by assessing its code
generation capabilities [6]. This was done by comparing the lines
of generated code and final code (the code after adding the user’s
delta code).

We are aware that the evaluation with a single case study intro-
duces an external threat to the validity of the results, an inappropri-
ate generalization of the results. We reduce this risk by evaluating

Platform-specific Modeling for RIOT based IoT Systems

0 87.5 86687 90

80
- 75
70 65 65 70 556059
50 56 57 60

49 50 46 49 47

50
40 40
35 30

20
20

7 10 g

10
0 mill 0

Final Code Generated Delta Code Generation
Code Performance Code

M Server MClient ®Average

(a) Smart irrigation case study

Final Code Generated DeltaCode Generation
H Server MClient

(b) Smart lighting case study

ICSEW’20, May 23-29,20, Seoul,Republic of Korea

7981680 88 87
86
84
82

80
121111

| "

Smart Irrigation Smart Lighting Grand Average
Case Study Case Study

Performance

® Average

(c) Averages

Figure 6: Generation performance of the DSML4RIOT

DSMLA4RIOT with multiple case studies. To this end, we focus on
generation performance of two case studies discussed earlier.

Considering the evaluation of the code generation performance
of the smart irrigation case study, moving a line of code is treated
as a delta line of code. For this case study, 65 lines of client-side
code are generated in total. Also, 10 lines of code are either added
manually or replaced in the generated code. Additionally, the stremp
function also counts as extra delta code on the server-side. As a
result, 65 lines of code are generated successfully over total of 75
lines of the final code. So, the code generation’s performance is
%86.6 for the client-side of this case study. At the server-side, 49
lines of code are generated automatically and 7 lines of code are
either added manually or replaced. As a result, 49 lines of code are
generated over 56 lines of the final code. So, the code generation
performance is %87.5 for the server-side of the irrigation case study.

To ease the understating of these figures, they are depicted in
a diagram. Figure 6a shows a comparison of number of the final
code, generated lines of code, and delta lines of code for the smart
irrigation system. It also shows the generation performance. For
each of these items, the Blue bars (the left bars) represent the server-
side, the orange bars (the middle bars) represent the client-side, and
grey bars (the right bars) represent the average of the two sides.

More code is generated for the client-side compared to the server-
side, so, the client-side requires more delta codes. However, the
performance rate of the client-side and the server-side are close
together. As a result, a high percentage of generation rate was
achieved with the number of codes generated by DSML4RIOT,
even if the client-side required more delta codes. In other words,
the number of the generated codes overcame the number of the
required delta codes.

Similar to the evaluation of the irrigation case study, most of the
code for the smart lighting case study is generated by DSML4RIOT.
However, compared to the smart irrigation case study, the smart
lighting system has more delta code.

Considering the evaluation of code generation performance of
DSMLARIOT in the development of the smart lighting system, mov-
ing a code line is treated as a delta line of code. Additionally, the
gpio_read function also counts as extra delta code. In the client-side
49 lines of code are generated and 11 lines of code are either added
manually or moved to another line. On the server-side, 46 lines
of code are generated and 12 lines of code are added manually.

Additionally, the stremp function also counts as extra delta code.
The generation performance of the DSML4RIOT for this case study
is 79% on the server-side and 81.6% on the client-side.

These figures are demonstrated in a diagram to ease their under-
standing. Figure 6b shows a comparison of the number of generated
lines of code with the number of delta lines of code for the smart
lighting system. It also shows the generation performance in the
diagram.

The final code bars show the lines of code required to build the
smart lighting system. They are close together at the server-side
and the client-side. Since the server-side has less generated lines of
code and required more delta codes compared to the client-side the
success rate of the server-side is low comparing to the client-side.
The generated lines of code of the client-side are more than the
server-side and it required fewer delta codes in this case study. The
same result could not be observed in the smart irrigation system.
This can be concluded as the requirements of a case study changes
according to its target domain and given functionalities.

To compare the averages, Figure 6¢ shows the average code
generation performance for the smart irrigation system (87%) and
the smart lighting system (80%). The grand average of generation
performance for these two case studies using DSML4RIOT is 83.5%
of total artifacts.

7 CONCLUSION

In this study, a domain-specific modeling language is presented,
called DSML4RIOT, to support the design and implementation of IoT
systems based on RIOT operating system. DSML4RIOT addresses
the increasing complexity and difficulty of developing these systems.
Our study provides an abstraction to reduce this complexity and
to ease this difficulty. A set of graphical notations, as well as some
domain constraints, are subsequently used to develop a graphical
editor for the DSML. The generation capability of the proposed
DSML is evaluated by two case studies.

Our evaluation results show that the proposed approach for the
development of IoT systems, using the provided DSML, can generate
a significant part, about 83.5%, of the final code automatically. This
can reduce the development complexity, time and cost as well as
increasing the quality of the resulting system, as the generated code
is architectural and with best practice (and without errors).

ICSEW’20, May 23-29,20, Seoul,Republic of Korea

As future work, we plan to raise the level of abstraction for the
modeling environment to support Platform-Independent Modelling
by integrating the results of our previous studies, [21] and [17], and
using the model to model transformations.

ACKNOWLEDGMENT

This study is partially funded by the Scientific Research Project No
17-UBE-002 at EGE University, Izmir, Turkey. Some of the ideas
in this work were developed during Short Term Scientific Mis-
sions (STSM Nos. 41940 and 41967) by two of the authors, within
the IC1404 Multi-Paradigm Modelling for Cyber-Physical Systems
(MPM4CPS) COST Action.

REFERENCES

[1] Mehdi Adda and Rabeb Saad. 2014. A data sharing strategy and a DSL for service
discovery, selection and consumption for the IoT. Procedia Computer Science 37
(2014), 92-100.

Sadik Arslan, Moharram Challenger, and Orhan Dagdeviren. 2017. Wireless

sensor network based fire detection system for libraries. In 2017 International

Conference on Computer Science and Engineering (UBMK). IEEE, 271-276.

[3] Emmanuel Baccelli, Oliver Hahm, Mesut Gunes, Matthias Wahlisch, and

Thomas C Schmidt. 2013. RIOT OS: Towards an OS for the Internet of Things.

In 2013 IEEE conference on computer communications workshops (INFOCOM WK-

SHPS). IEEE, 79-80.

Delphine Beaulaton, Najah Ben Said, Ioana Cristescu, Régis Fleurquin, Axel Legay,

Jean Quilbeuf, and Salah Sadou. 2018. A language for analyzing security of IoT

systems. In 2018 13th Annual Conference on System of Systems Engineering (SoSE).

IEEE, 37-44.

[5] Hugo Bruneliere, Erik Burger, Jordi Cabot, and Manuel Wimmer. 2019. A feature-

based survey of model view approaches. Sofiware & Systems Modeling 18, 3

(2019), 1931-1952.

Moharram Challenger, Geylani Kardas, and Bedir Tekinerdogan. 2016. A system-

atic approach to evaluating domain-specific modeling language environments

for multi-agent systems. Software Quality Journal 24, 3 (2016), 755-795.

[7] Juan De Lara and Esther Guerra. 2010. Generic meta-modelling with concepts,
templates and mixin layers. In International Conference on Model Driven Engi-
neering Languages and Systems. 16-30.

[8] Juan de Lara, Esther Guerra, Jorg Kienzle, and Yanis Hattab. 2018. Facet-oriented

modelling: open objects for model-driven engineering. In Proceedings of the 11th

ACM SIGPLAN International Conference on Software Language Engineering. ACM,

147-159.

Caglar Durmaz, Moharram Challenger, Orhan Dagdeviren, and Geylani Kardas.

2017. Modelling Contiki-Based IoT Systems. In 6th Symposium on Languages,

Applications and Technologies (SLATE 2017) (OpenAccess Series in Informatics

(OASIcs), Vol. 56). Dagstuhl, Germany, 5:1-5:13. https://doi.org/10.4230/OASIcs.

SLATE.2017.5

[10] FahadR Golra, Antoine Beugnard, Fabien Dagnat, Sylvain Guerin, and Christophe
Guychard. 2016. Addressing modularity for heterogeneous multi-model systems
using model federation. In Companion Proceedings of the 15th International Con-
ference on Modularity. ACM, 206-211.

[11] Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa. 2016. Thingml:
alanguage and code generation framework for heterogeneous targets. In Proceed-
ings of the ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and Systems. ACM, 125-135.

[12] Mahmoud Hussein, Shuai Li, and Ansgar Radermacher. 2017. Model-driven
Development of Adaptive IoT Systems.. In MODELS (Satellite Events). 17-23.

[13] Burak Karaduman, Tansu Asici, Moharram Challenger, and Raheleh Eslampanah.
2018. A Cloud and Contiki based Fire Detection System using Multi-Hop Wireless
Sensor Networks. In Proceedings of the Fourth Intl. Conf. on Engineering & MIS
2018. ACM, 66.

[14] Burak Karaduman, Moharram Challenger, and Raheleh Eslampanah. 2018. Con-
tikiOS based library fire detection system. In 2018 5th Intl. Conf. on Electrical and
Electronic Engineering (ICEEE). IEEE, 247-251.

[15] Geylani Kardas, Zekai Demirezen, and Moharram Challenger. 2010. Towards
a DSML for semantic web enabled multi-agent systems. In Proceedings of the
International Workshop on Formalization of Modeling Languages. 1-5.

[16] Arthur Kihlwein, Anton Paule, Leon Hielscher, Wolfgang Rosenstiel, and Oliver
Bringmann. 2019. Firmware Synthesis for Ultra-Thin IoT Devices Based on Model
Integration. In 2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C). IEEE, 339-346.

[17] Hussein M Marah, Raheleh Eslampanah, and Moharram Challenger. 2018.
DSML4TinyOS: Code Generation for Wireless Devices. In International Workshop

[2

—

[4

flat

[6

=

[o

=

Burak Karaduman, Moharram Challenger, Raheleh Eslampanah, Joachim Denil, and Hans Vangheluwe

on Model-Driven Engineering for the Internet-of-Things.
Elaheh Azadi Marand, Elham Azadi Marand, and Moharram Challenger. 2015.
DSMLA4CP: a domain-specific modeling language for concurrent programming.
Computer Languages, Systems & Structures 44 (2015), 319-341.
Behailu Negash, Tomi Westerlund, Amir M Rahmani, Pasi Liljeberg, and Hannu
Tenhunen. 2017. DoS-IL: A domain specific Internet of Things language for
resource constrained devices. Procedia Computer Science 109 (2017), 416-423.
Baris Tekin Tezel, Moharram Challenger, and Geylani Kardas. 2016. A meta-
model for Jason BDI agents. In 5th Symposium on Languages, Applications and
Technologies (SLATE’16). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[21] Tansu Zafer Asici, Burak Karaduman, Raheleh Eslampanah, Moharram Chal-
lenger, Joachim Denil, and Hans Vangheluwe. Accepted. Applying Model Driven
Engineering Techniques to the Development of Contiki-based IoT Systems. In
Ist International Workshop on Software Engineering Research & Practices for the
Internet of Things (SERP4IoT 2019).

(18

[19

[20

APPENDIX: SETUP OF THE CASE STUDIES

Figure 7: Setup for the smart lighting system

Figure 8: Setup for the smart irrigation system

